Kinetics

E + S → ES → E + P
++
I I
I I
I I
EI ESI
KI = [E][I]/[EI]

(1)

Ki = [ES]/[ESI]

(2)
(3)
(4)

ET = E + ES + ESI + EI
= [E] + [ES] + [ES][I]/KI + [E][I]/KI
= [E] (1 + I/Ki) + [ES](1 + I/Ki)
= Km [ES]/[S] + [ES](1 + I/KI)
= [ES](Km/[S] + 1) (1 + I/KI)

(5)

For enzyme-catalysed reaction:

(6)
(7)
(8)

Substituting (8) in (5), we get

Vmax /V = (Km/[S] +)(1 + I/KI)
Vmax /V = (Km + [S]/[S])(1 + I/KI)
V/Vmax = [S]/Km + [S]) × 1/1 + I/KI)
V = Vmax[S]/(Km + [S]) × 1/1 + I/KI)

Dividing by (1 + I/KI) in numerator and denominator,

(9)
(10)

Where

Vmaxapp = Vmax/1 + I/Ki

This is the M–M equation for non-competitive inhibitor refer Table 6.9.

From equation (10), it is clear that when an enzyme is inhibited non-competitive, Vmax decreases and Km value does not change; that is, the combination with either [S] or [I] does not affect the affinity for the other as shown in Figure 6.22.

 

Table 6.9 M–M equation (Slope, X-intercept, Y-intercept)

Slope(M)Km(1 + I/KI)/Vmax
Y intercept1 + I/KI/Vmax
X intercept−1/Km
Figure 6.22 Effect of Non-competitive Inhibitor

Figure 6.22 Effect of Non-competitive Inhibitor


Leave a Reply

Your email address will not be published. Required fields are marked *